Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: Delineation using 3 T MRI and intraoperative microelectrode recording
نویسندگان
چکیده
BACKGROUND Deep brain stimulation (DBS) is a minimally invasive and reversible method to treat an increasing number of neurological and psychiatric disorders, including epilepsy. Targeting poorly defined deep structures is based in large degree on stereotactic atlas information, which may be a major source of inconsistent treatment effects. AIM OF THE STUDY In the present study, we aimed to study whether a recently approved target for epilepsy (anterior nucleus of thalamus, ANT) is visualized in clinically established 3 T MRI and whether ANT is delineated using intraoperative microelectrode recording (MER). We have especially focused on individual variation in the location of ANT in stereotactic space. We also aimed to demonstrate the role of individual variation in interpretation of MER data by projecting samples onto AC-PC (anterior and posterior commissure) and ANT-normalized coordinate systems. METHODS Detailed analysis of ANT delineations in 3 T MRI short tau inversion recovery (STIR) images from eight patients undergoing DBS for refractory epilepsy was performed. Coronal and sagittal cross-sectional models of ANT were plotted in the AC-PC coordinate system to study individual variation. A total of 186 MER samples collected from 10 DBS trajectories and 5 patients were analyzed, and the location of each sample was calculated and corrected accordingly to the location of the final DBS electrode and projected to the AC-PC or coordinate system normalized to ANT. RESULTS Most of the key structures in the anatomic atlas around ANT (mammillothalamic tract and external medullary lamina) were identified in STIR images allowing visual delineation of ANT. We observed a high degree of anatomical variation in the location of ANT, and the cross-sectional areas overlapped by study patients decreased in a linear fashion with an increasing number of patients. MER information from 10 individual trajectories correlated with STIR signal characteristics by demonstrating a spike-negative zone, presumably white matter layer, at the lateral aspect of ANT in ANT-normalized coordinate system as predicted by STIR images. However, MER information projected to the AC-PC coordinate system was not able to delineate ANT. CONCLUSIONS ANT is delineated in 3 T MRI by visualization of a thin white matter lamina between ANT and other nuclear groups that lack spiking activity. Direct targeting in the anterior thalamic area is superior to indirect targeting due to extensive individual variation in the location of ANT. Without detailed imaging information, however, a single trajectory MER has little localizing value.
منابع مشابه
Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy
BACKGROUND Deep brain stimulation of the anterior nucleus of the thalamus (ANT) is an emerging therapy for refractory focal epilepsy. However, the most optimal target for stimulation has not been unambiguously described. OBJECTIVE In the present study, we investigated the correlation between the stimulation site and outcome in order to define the optimal target for deep brain stimulation in r...
متن کاملRelationship of the P Angle with Stereotactic Arc in Intraoperative Outcome of Patients with Parkinson’s Disease Undergoing Deep Brain Stimulation
Background & Aim: DBS (deep brain stimulation) is a new and successful technique in treatment of symptoms of Parkinsonism especially after drug resistance. Research in this field is mostly designed for evolution of this technique. The present study aimed at evaluating the relationship between the angle formed in midsagittal and STN (sub-thalamic nucleus) axis line and recording l...
متن کاملStimulation Induced Electrographic Seizures in Deep Brain Stimulation of the Anterior Nucleus of the Thalamus Do Not Preclude a Subsequent Favorable Treatment Response
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a method of neuromodulation used for refractory focal epilepsy. We report a patient suffering from drug-resistant epilepsy who developed novel visual symptoms and atypical seizures with the onset of ANT-DBS therapy. Rechallenge under video electroencephalography recording confirmed that lowering the stimulation voltag...
متن کاملRapid subthalamic nucleus deep brain stimulation lead placement utilising CT/MRI fusion, microelectrode recording and test stimulation.
Subthalamic nucleus (STN) deep brain stimulation (DBS) has become an established treatment strategy for patients with medically refractory Parkinson's disease (PD). There are however numerous strategies employed for STN lead placement. Variations include method of STN localisation, use of microelectrode recording, number of microelectrode recording passes and time taken for the procedure. We de...
متن کاملThe anatomical and electrophysiological subthalamic nucleus visualized by 3-T magnetic resonance imaging.
BACKGROUND Accurate localization of the subthalamic nucleus (STN) is critical to the success of deep brain stimulation surgery for Parkinson disease. Recent developments in high-field-strength magnetic resonance imaging (MRI) have made it possible to visualize the STN in greater detail. However, the relationship of the MR-visualized STN to the anatomic, electrophysiological, or atlas-predicted ...
متن کامل